Berechnen Sie die historische Volatilität mit EWMA Volatilität ist die am häufigsten verwendete Risikomessung. Die Volatilität in diesem Sinne kann entweder eine historische Volatilität (eine aus früheren Daten beobachtete) oder eine Volatilität (beobachtet aus Marktpreisen von Finanzinstrumenten) sein. Die historische Volatilität kann auf drei Arten berechnet werden: Einfache Volatilität, exponentiell gewichtetes Wachstum Durchschnitt (EWMA) GARCH Einer der großen Vorteile von EWMA ist, dass es mehr Gewicht auf die jüngsten Erträge bei der Berechnung der Renditen gibt. In diesem Artikel werden wir untersuchen, wie die Volatilität mit EWMA berechnet wird. Wenn wir die Aktienkurse anschauen, können wir die täglichen logarithmischen Renditen unter Verwendung der Formel ln (P i P i-1) berechnen, wobei P für jedes steht Tage Schlusskurs der Aktie. Wir müssen das natürliche Protokoll verwenden, weil wir die Renditen kontinuierlich erweitern wollen. Wir haben jetzt täglich Rücksendungen für die gesamte Preisreihe. Schritt 2: Platzieren Sie die Rückkehr Der nächste Schritt ist die nehmen das Quadrat der langen Rückkehr. Dies ist tatsächlich die Berechnung der einfachen Varianz oder der Volatilität, die durch die folgende Formel dargestellt wird: Hier steht u für die Rendite und m für die Anzahl der Tage. Schritt 3: Gewichte Zuweisen Gewichte zuweisen, so dass die jüngsten Renditen ein höheres Gewicht haben und ältere Renditen weniger Gewicht haben. Dazu benötigen wir einen Faktor Lambda (), eine Glättungskonstante oder einen persistenten Parameter. Die Gewichte werden als (1-) 0 zugewiesen. Lambda muss kleiner als 1 sein. Risikometrik verwendet Lambda 94. Das erste Gewicht ist (1-0,94) 6, das zweite Gewicht ist 60,94 5,64 und so weiter. In EWMA summieren sich alle Gewichte auf 1, jedoch sinken sie mit einem konstanten Verhältnis von. Schritt 4: Multiplizieren Rückkehr-quadriert mit den Gewichten Schritt 5: Nehmen Sie die Summe von R 2 w Dies ist die abschließende EWMA-Varianz. Die Volatilität ist die Quadratwurzel der Varianz. Der folgende Screenshot zeigt die Berechnungen. Das obige Beispiel, das wir gesehen haben, ist der von RiskMetrics beschriebene Ansatz. Die generalisierte Form der EWMA kann als die folgende rekursive Formel dargestellt werden: Exploration des exponentiell gewichteten Moving Average Volatility ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, lesen Sie unter Verwenden der Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächliche Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Anwendung eines Gewichtungsschemas Zuerst werden wir Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Also, wenn alpha (a) ein Gewichtungsfaktor (speziell eine 1m) ist, dann eine einfache Varianz sieht etwa so aus: Die EWMA verbessert auf einfache Varianz Die Schwäche dieser Ansatz ist, dass alle Renditen das gleiche Gewicht zu verdienen. Yesterdays (sehr jüngsten) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Aktienkursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit nieder, daher könnte eine einfache Varianz künstlich hoch sein. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkende Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen durch ein Minus-Lambda). Beachten Sie, wie wir sind nur das Hinzufügen von zwei Begriffe zusammen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um eine Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.) Eine Runde der Finanzierung, wo die Anleger Kauf von einem Unternehmen zu einem niedrigeren Wert als die Bewertung auf dem platziert. Englisch: eur-lex. europa. eu/LexUriServ/LexUri...0053: EN: HTML Eine Abkürzung zur Schätzung der Anzahl von Jahren, die erforderlich sind, um Ihr Geld mit einer gegebenen jährlichen Rendite zu verdoppeln (siehe zusammengesetzte jährliche Zinssätze), die auf einem Darlehen belastet oder auf einer Anlage über einen bestimmten Zeitraum realisiert werden Investment-Grade-Sicherheit durch einen Pool von Anleihen, Darlehen und andere Vermögenswerte gesichert. CDOs nicht in einer Art von Schulden spezialisiert. Das Jahr, in dem der erste Zustrom von Investitionskapital an ein Projekt oder ein Unternehmen geliefert wird. Dies markiert, wenn das Kapital ist. Leonardo Fibonacci war ein italienischer Mathematiker, geboren im 12. Jh. Es ist bekannt, dass er die Fibonacci-Zahlen entdeckt hat.
No comments:
Post a Comment